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Drag Prediction at Subsonic and Transonic Speeds
Using Euler Methods
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A technique for the evaluation of aerodynamic drag from flowfield solutions based on Euler equations is
discussed. The technique is based on the application of the momentum theorem to a control surface enclosing
the configuration and it allows the decomposition of the total drag into induced drag and wave drag. Conse-
quently, it provides more physical insight into the drag sources than the conventional surface-pressure integration
technique. The induced drag is obtained from the integration of the kinetic energy of the trailing vortex system
on a wake plane and the wave drag is obtained from the integration of the entropy jump over the shocks. The
drag-evaluation technique is applied to three-dimensional steady flowfield solutions for the ONERA M6 wing
as well as an AR-7 wing with an elliptic spanwise chord distribution and a NACA 0012 section shape. Comparisons
between the drag obtained with the present technique and the drag based on the integration of surface pressures

are presented for several Euler codes.

Introduction

HE aerodynamic drag of an aircraft flying at subsonic

speeds can be separated into the viscous drag and the
induced (or vortex) drag. The former is generated through
the action of the viscosity in the boundary layer, whereas the
latter is the result of the shedding of vorticity that accompanies
the production of lift. Here, we limit ourselves to inviscid
attached flows and, consequently, the only drag component
is the induced drag. At transonic and supersonic speeds an-
other drag-producing mechanism arises from the radiation of
energy away from the aircraft in the form of pressure waves;
i.e., the wave drag.

The total inviscid drag can be determined by integrating
the pressure acting on the surface of the aircraft. This so-
called near-field technique can lead to inaccuracies in the drag
calculation because it involves the near cancellation of a large
force component in the thrust direction and a slightly larger
force component in the drag direction.' Also, this technique
does not allow the separation of the drag into its two physical
components: 1) induced drag and 2) wave drag. This drag
breakdown capability is especially important in the design
phase when the performance characteristics of the aircraft are
being maximized by refining and improving its shape. The
efficiency of this design process can be greatly enhanced when
the physical mechanisms, whereby the drag is created, can be
identified. For this reason, far-field techniques based on the
integration of the momentum flux along a closed contour
enclosing the configuration have been applied to evaluate the
drag and its components. These far-field techniques have been
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shown to be very useful and accurate in the evaluation of
potential-flow solutions at subsonic and transonic conditions.?
However, a fundamental difference exists in the application
of the field integral to solutions based on the potential-flow
equations and on the Euler equations.??® The latter formu-
lation of the governing equations is preferred because it can
provide a more accurate modeling of the vortical field in the
flow and it is not limited to flows with weak shocks. Hence,
the theory presented in this article is developed for Euler
solutions.

In previous papers,** the technique based on the integra-
tion of the surface pressure and two far-field techniques (one
based on the integration of the momentum flux along a con-
tour enclosing the configuration and the second based on the
evaluation of a wake integral), are described and applied to
three-dimensional Euler solutions for wings with attached flow
at low Mach number conditions. These results demonstrate
that the far-field technique based on the wake integral pro-
vides the most consistent and accurate induced-drag predic-
tions. Both the surface pressure integration technique and the
momentum integration technique tend to give erroneous drag
values, mainly as a result of the inherent numerical viscosity
in the Euler solutions.

The purpose of this article is to extend the formulation for
the prediction of induced drag described in Refs. 4 and 5 to
compressible flow conditions and to include a separate pre-
diction technique for wave drag. In the following section, a
detailed discussion is presented on the evaluation of the aero-
dynamic force on lifting and nonlifting configurations. Next,
the technique is applied to determine the drag from Euler
solutions for two wing configurations at subsonic and tran-
sonic conditions.

Force-Evaluation Methodology

The far-field expression for the aerodynamic force on a
configuration in an unbounded uniform flow v = iU, can be
obtained by integrating the pressure and momentum flux over
the far surface S, of a closed control volume enclosing the
configuration:

far

F, = —LP [pn + po(v-n)] dS (1)
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where p is the static pressure, p is the density, v = iu + ju
+ kw is the flow velocity, and » is the unit outward normal
to the control volume. By moving the inlet plane S, far up-
stream of the body, such that all flow perturbations on it
vanish and by letting S, and the exit plane S, become of infinite
radius, where these two planes are normal to the freestream,
the i component (drag D) and the k component (lift L) of
Eq. (1) become

D= _J;'z [(p + pu?) — (p + puz)x] ds (2)

L= —J;Z (puw) dS 3)

It should be noted that these expressions for the lift and the
drag are also valid in viscous flows as long as S, is located far
enough downstream from the configuration (on the order of
one chord length) so that the viscous stresses in the wake are
negligible. Equations (2) and (3) can be expressed in terms
of gradients of the flow variables on the exit plane §,. Intro-
ducing the position vector r = jy + kz and noting that for
M, < 1 all flow variables approach their. freestream values at
the edge of the infinite plane, it can be shown that

p=1] v + puas @

In this gradient form it is possible to decompose the total drag
into the various drag sources.

The crossflow velocity components v and w and the mag-
nitude of the velocity vector g° = v-v are used to isolate the
induced drag. Also, the first and second laws of thermody-
namics are combined to obtain

Vp = pVh — pT'Vs (5)

and to isolate the wave drag where % is enthalpy, T is the
temperature, and s is the entropy. Hence, the expression (4)
for the drag (without any approximation) becomes

1 1.
D = 5L}{r~|:pv <h + §q> ~ pTVs
1 1
- EpV(v2 + w?) + szuz + uZVp}} ds (6)

Since the total enthalpy H = h + 1q? remains constant in
the absence of external work or heat addition, the first term
in the integral in Eq. (6) vanishes. The second term in Eq.
(6) is the entropy term and it can be expanded as follows:

Term 11

—1/(2R) Lz [p(r-V)s] dS

il

~p./(2R) ﬁ [(r V)s] dS

- 1/(2R) L [Ap(r-V)s] dS (7

where Ap = p — p. and R is the gas constant. It can be
shown that Eq. (7) can be rewritten in the following form:

Term Il = p./R f As dS — 1/(2R) f [Ap(r-V)s] dS (8)
S $2

where As = 5 — 5., For S, at x — o and zero-lift conditions,
the pressure perturbation Ap and, hence, the contribution of

the second integral in Eq. (8) vanishes. The first integral in
Eq. (8) represents the expression commonly used for calcu-
lating the wave drag D,, (see Refs. 6-9 for wave-drag expres-
sions that are very similar or identical in form, but are deduced
differently). For lifting conditions Ap remains finite, even for
S, at x — %, and the second term represents a very small
interaction drag (Ref. 9). Since the entropy is conserved
everywhere, except at the shocks, the first integral in Eq. (8)
may be evaluated across the shocks instead of over the plane
S, far downstream of the configuration.

The third term in Eq. (6) represents the crossflow kinetic
energy and it can be expanded as follows:

Term III —% L {r-[pV(@? + wd)}} dS

I

L[ o7 + wo)as

+ ij;z [(v2 + w2 (r-V)p] dS )

Before proceeding further with the analysis of Eq. (9) it is
helpful to inspect the remaining terms in Eq. (6) (Terms IV
and V) more closely. These terms can be rearranged in the
following form:

Terms IV + V = :1’“’;2 [(r-V){(pu?)] dS

+ %Ll [u?(r-V)p] dS (10)

By using conservation of mass and introducing the pertur-
bation velocity in the freestream direction Au = v — U,,
Eqgs. (9) and (10) can be expanded in

Terms III + IV + V = %J’ [p(v? + w?)] dS
2 s,
- %J; (pAu?) dS + U.12 J.g [Au(r-V)p] dS

+ thL [(@* + w? + Aw?)(r-V)p] dS (11)

For subcritical flows the perturbation velocity Au is solely due
to the acceleration of the flow in the cores of the trailing
vortex system, whereas for supercritical flows Au contains also
a contribution from the jump in the velocity across the shock
waves. Using the approach developed in Ref. 5, the first
integral in Eq. (11) can be expressed as

%Lz [p(v? + w?)] dS

AP se o

where ¢(y, z) and Y(y, z) represent the crossflow potential
and stream function, respectively, and g = — 1/p 3(pu)/ox. If
S, is far downstream of the configuration then the flow be-
comes essentially two dimensional and the density variation
becomes negligible. Also, the perturbation in the freestream
component of the velocity is small compared to the contri-
bution of the crossflow velocity components (e.g., Ref. 10).
Consequently, Eq. (11) simplifies to

Terms IIl + IV + V = p./2 J; (&) ds (13)



VAN DAM ET AL. 841

where ¢ represents the vorticity components in the freestream
direction. This integral represents the expression commonly
used for calculating the induced drag D; and it only has to be
evaluated over the small region in S, that contains trailing
vorticity. It is important to note that since the flow is circu-
lation preserving, the integral in Eq. (13) may be evaluated
immediately downstream of the configuration.

To a close approximation the expression (6) for the drag
can now be written as

D=D,+D,=p.R L As dS + p./2 L () dS
D2 220
(14)

This expression is applied to evaluate the total drag and its
components from numerical solutions of the Euler equations
for subsonic and transonic flows past lifting and nonlifting
configurations. The wave drag is obtained from the jump in
entropy across the shock system. This calculation should be
conducted just downstream of the shocks, but ahead of the
trailing edge to avoid capturing any spurious entropy asso-
ciated with the vortical wake development. However, the
latter requirement can often not be met for swept-wing con-
figurations. To get around this problem for swept configu-
rations with swept shocks, the sectional wave drag is calcu-
lated by evaluating the entropy jump for each span station.
Next, the total wave drag is approximated by integration of
the sectional contributions over the entire span of the con-
figuration.

The expansion of the expression for the lift [Eq. (3)] is
discussed in Ref. 5. The application of Stokes’ theorem allows
us to write Eq. (3) in the cross-product form

L= | 0¥ % (ul-iy as (15)

or, by observing that the perturbation in the freestream com-
ponent of the velocity is small compared to U,

ol plig e

Again, for §, at x — o the variation in the density can be
neglected and

L=pU. | (o) as (a7)

1t is of some interest to note that the integral in Eq. (17) only
has to be evaluated over the region that contains vorticity,
and, because the flow is circulation preserving, may be eval-
uated immediately downstream of the configuration.

Euler Codes

The codes used in the present study to generate the flow-
field solutions are referred to as TLNS3D, LANS3D, and
CFL3D.

TLNS3D is a cell-centered finite volume method with a
long history going back to Jameson et al.!' and more recently
further developed by Vatsa and his co-workers (e.g., Ref.
12). It uses an explicit five-stage Runge-Kutta time-marching
algorithm with second-order central differences for the spatial
derivatives. Second- and fourth-order dissipation terms are
added for numerical stability. Convergence is accelerated
through utilization of the multigrid technique as well as im-
plicit residual smoothing.

LANS3D is a finite difference method developed by Obay-
ashi, Fujii, and co-workers (Refs. 13 and 14). The governing
equations are integrated numerically in time by the lower/

upper-alternating direction implicit (ILU-ADI) factorization
algorithm until a steady-state solution is obtained. This al-
gorithm provides a compromise between the LU and ADI
algorithms in which each ADI operator is decomposed into
the product of lower and upper bidiagonal matrices by a flux-
vector-splitting technique and a diagonally dominant factor-
ization. Both second- and fourth-order dissipation terms are
added for numerical stability.

CFL3D is a cell-centered finite volume method developed
by Thomas, Anderson, and others (Refs. 15 and 16). It uses
the ADI time-marching algorithm with third-order upwind-
biased differences for the spatial derivatives. The upwind
method used is the Roe flux-difference splitting, whereas the
min-mod flux limiting scheme is used to obtain smooth so-
lutions in the vicinity of discontinuities. Here the multigrid
option (V-cycle) is employed to accelerate the convergence
rate.

Test Cases

The test cases used for evaluation of the drag characteristics
are the X, = 1.0 wing and the ONERA M6 wing.

The X, = 1.0 wing was developed for induced-drag studies
and is described in Ref. 17. The pertinent points of this wing
configuration are its unswept straight trailing edge and curved
leading edge (Fig. 1). It has an elliptic spanwise chord dis-
tribution, a root chord ¢, = 1.0 (reference length), a semispan
b2 = 2,749, and an AR = 7.0. The elliptic spanwise chord
distribution results in a chord length of zero at the tip. To
avoid numerical difficulties in this region the wing is given a
small but finite chord length at the tip ¢, = 0.05 by terminating
the span at 7 = y/(b/2) = 0.999. The sectional shape is pro-
vided by the sharp trailing-edge version of the NACA 0012
airfoil.
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Fig. 2 Surface grid representation of the ONERA M6 wing.
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The ONERA M6 wing was developed to provide a test case
for code validation at subsonic and transonic speeds and a
large volume of experimental and computational data are
available for this configuration.'®" The wing is modeled such
that the root chord ¢, = 1.0 (reference length), the tip chord
¢, = 0.563, the semispan b/2 = 1.476, and the AR = 3.8
(Fig. 2). The leading edge has a constant sweep angle of 30
deg and the sectional shape in the freestream direction is
provided by the airfoil coordinates from Table 7-5 in Ref. 19.
Presently, the postanalysis procedure to evaluate the drag is
limited to flowfield solutions on C-H grids. Consequently, the
actual rounded tip geometry tested in the experiment is not
modeled.

Results and Discussion

Most of the results presented and discussed in this article
are based on flowfield solutions obtained using TLNS3D with
the second- and fourth-order dissipation terms reduced to
minimum values for numerical stability and the residual error
reduced at least five orders of magnitude. The results based
on flowfield solutions obtained using LANS3D and CFL3D
are taken from Ref. 20. The TLNS3D and LANS3D solutions
were obtained on the Cray Y-MP (Eagle) of the NASA Ames
Research Center. Due to the in-core limitation of 12 MWords
of this computer, the grids typically consist of 250,000 points
with the far-field boundaries at 6—8 reference lengths away
from the wing surface. Special attention is paid to the grid
spacing near the leading and trailing edges of the wings as
well as the tips (see Figs. 1 and 2). At the leading edges and
the trailing edges the chordwise grid spacing (nondimension-
alized with reference to reference length) is reduced to 0.001
and 0.0001, respectively, and at the tips the spanwise grid
spacing (nondimensionalized with respect to semispan) is re-
duced to less than 0.01.

In Figs. 3-5 and Table 1 the results for the X, = 1.0 wing
at an angle of attack a = 4 deg and freestream Mach number
M. = 0.20 are presented. The upper surface pressure con-
tours (Fig. 3) depict a well-behaved two-dimensional flow
pattern for most of the wing. The spanwise load distribution
(Fig. 4) matches the classic elliptic distribution well and this

Fig. 3 Upper surface pressure contours for X, = 1.0 wingat M. =
0.20 and o« = 4 deg (TLNS3D).

0.8 |
cf-c
CL-cav ¢ |
04 r —° Calculated
Distribution
0.2 r —®— Elliptic Distribution
0
0 0.2 0.8 1

4 0.6
y/(b/2)

Fig. 4 Spanwise loading distribution for X, = 1.0 wing at M.. = 0.20
and a = 4 deg (TLNS3D). Here, ¢, is the sectional lift coefficient, ¢
is the local chord, and c,, = S/b is the average chord.

Table 1 Lift and drag coefficients as obtained from surface
pressure integration and wake evaluating technique for X, = 1.0
wing at « = 4 deg and M. = 0.20 (TLNS3D)

[ Cp
Surface pressure integration 0.3426 0.0063
Wake analysis technique 0.3425 0.0054 (induced)

Linear theory (C, = 0.3425) —_ 0.0053
0.00550 0.3500
0.00530 “\.\\ 1 0.3450

OOy B —

0.00510 \ 0.3400
CDj CL

0.00480 1 0.3350
r+ Induced Drag
0.00470 ]\ o Lift 1 0.330Q00
0.00450 - 0.3250
0.00 0.50 1.00 1.50 2.00

Distance from trailing edge of wing, Ax

Fig. 5 Variation in computed lift coefficient C, and induced-drag
coefficient C;, with streamwise location of integration plane for X, =
1.0 wing at M, = 0.20 and « = 4 deg (TLNS3D).

serves as a benchmark against which the accuracy of the pre-
dicted drag values are assessed. The predicted values for the
lift coefficient C, = 2L/(p, U2S) and the drag coefficient C,,
= 2D/(p..U2S) are presented in Table 1. The trailing vorticity
distribution is evaluated just downstream of the wing at Ax
= 0.1, and from the results of Table 1 it is clear that there
is excellent agreement between the lift coefficient obtained
from the evaluation of the wake integral [Eq. (17)] and the
lift coefficient obtained from the integration of surface pres-
sures. This provides a check on the consistency of the nu-
merical solution as well as the drag prediction. Previous re-
ported results obtained with LANS3D and CFL3D give values
for the lift coefficient within 2% of the present C, = 0.3426.>2°
According to linear theory the (induced) drag and the lift for
a wing with an elliptic spanwise loading are related as follows:
Cp, = C3/(w AR). For high-AR unswept wings at incom-
pressible conditions this expression for the drag is known to
be quite accurate. The results in Table 1, however, indicate
that the drag obtained from surface-pressure integration dif-
fers by more than 10 counts from the linear-theory value,
whereas the drag obtained from the wake integral [Eq. (13)]
is within 1 count. Similar discrepancies in the drag values
based on surface-pressure integration using LANS3D and
CFL3D are reported elsewhere.®* In the section describing
the force-evaluation methodology it was argued that lift as
well as induced drag may be computed by evaluating the
respective integrals for any downstream location of the wake
plane S,. The question arises as to whether this result may
be realized in these numerical solutions of the Euler equa-
tions. In Fig. 5 the computed lift coefficient and induced-drag’
coefficient are plotted for a range of wake-plane locations.
The computed values at Ax = 0.1 are those listed in Table
1. The lift coefficient is shown to vary by about 0.001, whereas
the drag coefficient gradually diminishes by 3.5 counts from
0.00538 just downstream of the wing to 0.00502 at Ax = 2.0.
The loss in accuracy of the computed forces with increasing
distance from the trailing edge is the result of the rapidly ex-
panding grid spacing in the streamwise direction (see Fig. 1).
The next two cases deal with transonic nonlifting flows. In
Fig. 6 the surface pressure contours are depicted for the
X, = 1.0 wing at zero angle of attack and M.. = 0.85. The
predicted values for the force coefficients are presented in
Table 2. This test case serves to check the prediction technique
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Table 2 Lift and drag coefficients as obtained from surface
pressure integration and wake evaluating technique for X, = 1.0
wing at « = 0 deg and M, = 0.85 (LANS3D)

Co Cp
Surface pressure integration 0.0000 0.0196
Wake analysis technique 0.0000 0.0000 (induced)

0.0193 (wave)
0.0193 (total)

Table 3 Lift and drag coefficients as obtained from surface
pressure integration and wake evaluating technique for ONERA M6
wing at « = 0 deg and M, = 0.92 (TLNS3D)

C,. Cp
Surface pressure integration 0.0000 0.0230
Wake analysis technique 0.0000 0.0000 (induced)

0.0219 (wave)
0.0219 (total)

Fig. 6 Surface pressure contours for X, = 1.0 wing at M, = 0.85
and « = 0 deg (LANS3D).

Fig. 7 Upper surface pressure contours for ONERA M6 wing at
M, = 0.92 and @ = 0 deg (TLNS3D).

for the wave drag because there is no lift and, therefore, no
induced drag. The pressure contours in Fig. 6 clearly depict
the shock development. The wave drag obtained by evaluating
the entropy rise across the shocks agrees well with the drag
obtained by integrating surface pressure, indicating that the
evaluation of wave drag from three-dimensional Euler solu-
‘tions can be performed with acceptable accuracy.

In Fig. 7 and Table 3 the results from the ONERA M6
wing at zero angle of attack and M, = (.92 are presented.
The surface pressure contours depicted in Fig. 7 are very
similar to those reported in Ref. 16 for this test case. Also,
the values of the wave drag listed in Table 3 fall within the
range of values reported in Ref. 16, and again, the value
obtained by evaluating the entropy rise across the shocks is
in fair agreement with the value obtained by integrating sur-
face pressure.

We have shown that Egs. (13) and (17) are valid to evaluate
the induced drag and lift, respectively, and that Eq. (8) can

Fig. 8 Upper surface pressure contours for X, = 1.0 wing at M.. =
0.78 and @ = 4 deg (TLNS3D).

0.0250

0.0230

0.0210 M
Cpy,

0.0190

0.0170 |

0.0150 L —

-0.1 -0.08 -0.06 -0.04 -0.02 0

Distance from trailing edge of wing, Ax

Fig. 9 Variation in computed wave-drag coefficient C;, with stream-
wise location of integration plane ahead of trailing edge for X, = 1.0
wing at M, = 0.78 and o = 4 deg (TLNS3D).
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Fig. 10 Spanwise wave-drag distribution for X, = 1.0 wing at M, =

0.78 and & = 4 deg (TLLNS3D). Here, ¢4, is the sectional wave-drag

coefficient and c is the local chord.

be used to evaluate the wave drag at nonlifting conditions.
The next two cases will indicate if the present drag evaluation
technique can be used to decompose the total inviscid drag
of a lifting wing at transonic flow conditions with acceptable
accuracy into induced drag and wave drag. In Figs. 8—10 and
Table 4 the results for the X, = 1.0 wing at @ = 4 deg and
M. = 0.78 are presented. The surface pressure contours in
Fig. 8 depict the strong shock on the wing upper surface. The
predicted lift coefficients are in good agreement, demonstrat-
ing that the wake-analysis technique also works well at these
transonic lifting conditions. In Table 4 the sum of the wave
drag and the induced drag is also listed and shown to be in
excellent agreement with the drag value obtained from in-
tegration of the surface pressures. Also, the question arises
in what manner the wave drag as computed from the nu-
merical solutions of the Euler equations is affected by the
streamwise location of the integration plane. In Fig. 9 the
wave drag as computed from the wake integral is shown for
a range of wake-plane locations. The wave-drag value com-
puted at Ax = —0.1 is listed in Table 4. The results dem-
onstrate that the computed value for the wave-drag coefficient
increases gradually with increasing distance from the shock.
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Table 4 Lift and drag coefficients as obtained from surface
pressure integration and wake evaluating technique for X, = 1.0
wing at @ = 4 deg and M, = 0.78 (TLNS3D)

CL C[)
Surface pressure integration 0.4803 0.0304
Wake analysis technique 0.4842 0.0104 (induced)

0.0200 (wave)
0.0304 (total)

Table S Lift and drag coefficients as obtained from surface
pressure integration and wake evaluating technique for X, = 1.0
wing at &« = 4 deg and M, = 0.80 (CFL3D)

Cl. CI)
Surface pressure integration 0.5265 0.0421
Wake analysis technique 0.5353 0.0127 (induced)

0.0290 (wave)
0.0417 (total)

Spurious entropy production in the region of the flowfield
downstream of the shock causes this increase in the computed
drag.

The virtue of the present prediction technique based on the
wake analysis as a configuration analysis tool is further ex-
emplified by the results in Fig. 10. In this figure the spanwise
distribution of the wave drag as obtained from the evaluation
of the wave-drag integral is depicted. The results show that
most of the wave drag is generated in the root region of the
wing; not surprising given the zero sweep angle at the wing
root. More surprising is the spike in the wave-drag distribution
in the wingtip region. Under the influence of the trailing-
vortex system the downwash angles are smaller and, conse-
quently, the sectional lift coefficients are higher in this region.
This causes an increase in the shock strength and the rapid
rise in the sectional wave-drag coefficient near the wingtip.
The drag breakdown in Table 4 indicates that the wave drag
provides about 65% of the total inviscid drag and that the
induced drag is near its minimal value for the given wing AR
and lift coefficient. The above information enables us to con-
clude that the inviscid performance characteristics of the pres-
ent configuration at the given conditions can mainly be im-
proved by modifying the wing shape to reduce the shock
strength and, thus, the wave drag. This decision is not clear-
cut when one has only the drag information based on the
surface pressure integration.

For completeness, the results for the X, = 1.0 wing at
a = 4 deg and M., = 0.80 are summarized in Table 5. A
comparison with the data in Table 4 shows that the wave drag
as well as the induced drag have increased as a result of the
higher freestream Mach number. The drag breakdown makes
it clear, however, that most of the drag increment comes from
the wave drag. It is interesting to note that except for the
increase in induced drag due to the increase in lift, virtually
no Mach-number effect on the induced drag is calculated for
this configuration.

Concluding Remarks

A technique for the evaluating of aerodynamic drag from
flowfield solutions based on the Euler equations is discussed.
The drag-evaluation technique is limited to steady attached
subsonic and transonic flows about three-dimensional config-
urations in the absence of surface heating/cooling and active
systems such as surface blowing/suction and propulsion. The
technique allows the decomposition of the total inviscid drag
into drag due to vortex shedding (induced drag) and drag due
to shocks (wave drag). The former component is obtained by
evaluating the distribution of the trailing vorticity downstream
of the trailing edge of the configuration, and the latter com-

ponent of the drag is obtained by integrating the entropy rise
across the shocks.

The drag-evaluation technique is applied to several three-
dimensional flowfield solutions. These flowfield solutions are
obtained with three quite different Euler codes at both sub-
sonic and transonic flow conditions. The present force pre-
diction technique is shown to work well for all three Euler
codes. For all test cases the lift based on the evaluation of
the trailing vorticity is shown to be in good agreement with
the lift based on the integration of surface pressures. This
provides a check on the consistency of the numerical solution
as well as the drag prediction. The wake-evaluation technique
is shown to be more consistent and accurate when it comes
to the prediction of induced drag. This, together with the
separate wave-drag prediction, allows the aerodynamic de-
signer to gather detailed information on the sources of inviscid
drag, thereby enhancing the efficiency of the design process
for a particular configuration.
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